It has two inputs and one output.
Input: [Temperature, Humidity]
Output: [wattage]
I learned as follows
Even after 5 million rotations, it does not work properly.
Did I choose the wrong option?
var input_data = [
[-2.4,2.7,9,14.2,17.1,22.8,281,25.9,22.6,15.6,8.2,0.6],
[58,56,63,54,68,73,71,74,71,70,68,62]
];
var power_data = [239,224,189,189,179,192,243,317,224,190,189,202];
var reason_data = tf.tensor2d(input_data);
var result_data = tf.tensor(power_data);
var X = tf.input({ shape: [2] });
var Y = tf.layers.dense({ units: 1 }).apply(X);
var model = tf.model({ inputs: X, outputs: Y });
var compileParam = { optimizer: tf.train.adam(), loss: tf.losses.meanSquaredError }
model.compile(compileParam);
var fitParam = {
epochs: 500000,
callbacks: {
onEpochEnd: function (epoch, logs) {
console.log('epoch', epoch, logs, "RMSE --> ", Math.sqrt(logs.loss));
}
}
}
model.fit(reason_data, result_data, fitParam).then(function (result) {
var final_result = model.predict(reason_data);
final_result.print();
model.save('file:///path/');
});
The following is the result for 5 million times.
It should be the same as power_data , but it failed.
What should I fix?